
JOURNAL OF COMPUTATIONAL PHYSICS 78, 94113 (1988) 

Open Boundary Conditions for Stationary 
I nviscid Flow Problems 

LARS FERM 

Department of Scientific Computing, Uppsala University, Sweden 

Received January 8, 1987; revised September 1, 1987 

The steady state problem for flow in a channel is considered. Very accurate open upstream 
and downstream boundary conditions are derived for the Euler equations. No data are needed 
at the boundaries. It is enough that the upstream limit of the solution is available. Error 
estimates are derived for a simple model problem, and numerical experiments verify the results 
for the true non-linear equations. Newton’s method is used to solve the equations. The boun- 
dary conditions are given in such a form that they also can be used in connection with a 
time-dependent procedure. 0 1988 Academz Press, Inc. 

1. INTRODUCTION 

An artificial boundary is often introduced when the flow around an object like an 
airfoil is calculated numerically. Usually no data are available at such a boundary, 
but data are needed to make the problem well posed. Hence a special kind of boun- 
dary conditions is needed, and in this paper very accurate conditions for the steady 
state Euler equations are constructed. When the boundary conditions are derived, 
the only approximation is to introduce the free stream values of the solution into 
the coefficient matrices in the area outside the artificial boundary. The fundamental 
solution of the constant coefficient problem obtained is constructed. The boundary 
conditions are designed such that they are satisfied exactly by the fundamental 
solution. Therefore these conditions will be called the fundamental boundary con- 
ditions. Hagstrom and Keller [ 10, ll] discuss exact boundary conditions from a 
general point of view but they do not derive any conditions for the Euler equations. 
The boundary conditions derived here are based on an idea given by Gustafsson 
and Kreiss [9] for a simple example. The downstream conditions have already 
been derived by Ferm and Gustafsson [6]. The procedure can also be generalized 
to the external problem [S]. Exact boundary conditions of a similar type have also 
been derived for the Helmholz equation by Fix and Marin [7]. 

Several authors have introduced further approximations in addition to freezing 
the coefficients. Engquist and Majda [2, 31, and Bayliss and Turkel [l] study the 
time-dependent problem and obtain conditions from truncated expansions. The first 
approximation by Engquist and Majda, i.e., using free stream data for the in-going 
characteristic variables, has often been used in steady state calculations. Obviously 
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OPEN BOuNDARY CONDITIONS 95 

that requires such a large computational region that the free stream data make 
good approximations to these characteristic variables a.t the boundary. ~rnil~~~y~ 

iss and Tukel El] suggest an implementation of their boundary condition such 
the pressure of the converged solution takes the free stream value at the boun- 

dary. So does also the converged pressure obtained with the boundary condition 
studied by Rudy and Strikwerda in [12]. Engquist and Majda’s conditions a 
derived for constant initial data outside the boundary. The technique has recent 
been generalized by Gustafsson [S] such that waves coming from the outside are 
taken into account. His conditions are intended for the time-dependent problem, 

For the fundamental conditions two linear combinations of the physical variables 
are shown to be constant in the free stream direction, i.e., in the direction of the 
channel. That gives two conditions at every inflow point. Algebraic relatio 
between the Fourier coefficients of the fundamental solution are also used as bo 
dary conditions. Therefore one variable is Fourier transformed along the artific 
boundary, and one variable is transformed back to the physical space at every 
solution step. 

The boundary conditions are derived in Section 2. They are given a form sue 
that they can be used in connection with Newton’s method or in connecti 
time-dependent method. Energy estimates show the well-posedness in 
Section 4 contains an error analysis for a simple model problem, and the 
verified experimentally for the nonlinear problem in Section 5. Some c 
are given in Section 6. 

2. DERIVATION OF THE BOUNDARY GONDITIQNS 

Consider the steady state Euler equations 

Aw, + Bw, = 0, (2.1) 

where 

5 5 A= A= 

The geometry is an infinitely long channel with plane walls outside a 
region as shown in Fig. 1. We assume that the flow is subsonic and without discon- 
tinuities in the far regions F, and F2. The construction of the boundary conditions 
depends only on the properties outside the artificial boundaries Thus discon- 
tinuities are allowed in the interior of the computational domain. A natural 
assumption is that the limits of the solution far away from the ~~n-~~~f~rrn 

581/78/l-7 



96 LARS WRM 

FIG. 1. Flow in a channel. 

geometry are constant. We assume that some knowledge about these limits is 
available. If the upstream limit is known completely, no information is needed 
about the limit to the right. Note that the limits to the left and to the right are not 
equal for a problem like that in Fig. 1. 

When the boundary conditions are constructed the coefficient matrices are 
frozen at constant states denoted by U, W, U,... in the far regions F, and F2. The free 
stream values should be used here, but if they are not available a mean value along 
the artificial boundary will do. The condition V = 0 will be used since 

lim 0(x, y) = 0. 
I+-+m 

The frozen steady state system is 

hv, + Bwy = 0, (2.2) 

where 

00 

&OO I 

p 0 

0 
0 0 0 
0 0 c2p 0 1 

1/p ’ 
0 

The second equation and a linear combination of the first and fourth equation are 

-$ CA-& Y) + PUu(x, u)l = 0 

-$ cp(x, Y) - C2P(& Y)l = 0. 

This leads to the boundary conditions 

P(P1, VI-P-cc +lm4B1, VI--u-ml =o 
P(P1, Y)--P-m -~‘CP(B1, v)-P-ml =a 

(2.3) 
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A system for p and v alone can be derived from the frozen equations (2.2) 

where 

H= 0 l/pi 
- c2pii/v2 0 1 

Since pY = II = 0 at the channel walls y = 0 and y = 1, the expansions 

v(x, y) = 2 G,(x) sin nwy 
o=l 

(2.5) 

Ax, Y) = f IL(x) CQS n@Y 
w=o 

are weli suited for this problem. We introduce these expansions into the system 
(2.4), and get 

where 

(2.62) 

(2&b) 

The general solution of this problem has the form 

fi, 
L 1 fiul 

= a, qleRiX + oc2q2eizxj 

where qi and ,Ii are the solutions of the eigenvalue problem 

(&I+ wnfi) qj= 0. 

A simple calculation shows that 

tP3) 

(2.9) 

(2.10) 
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In the downstream far region the coefficient c(i must be zero for o # 0, otherwise 
the solution is unbounded. The ratio between the elements of q2 leads to the 
downstream boundary condition 

--- 
$o(PJ = - y ~clAP*), 0 = 1, 2,... . 

Similarly ~1~ is zero in the upstream far region, and we get 

(2.11) 

(2.12) 

Equation (2.6b) gives the downstream condition 

MM = Pm. (2.13) 

The boundary conditions (2.3), (2.11), (2.12), (2.13) form a complete set of con- 
ditions for the differential equations. They can be implemented in different ways 
in a practical calculation. A simple procedure is to multiply the downstream 
conditions (2.11), (2.13) by cos rcwy. Summation over o yields 

m 

PUG, Y) =pxz - y c ~OUM cos nw. 
0=1 

(2.14a) 

The corresponding upstream condition is 

(2.14b) 

A large number of experiments have been carried out where the derivatives are 
approximated by central differences in the computational domain, and the resulting 
system of algebraic equations is solved using Newton’s method. The true Jacobian 
has been used. Extrapolations ofp from the interior to the upstream boundary, and 
of p, U, u to the downstream boundary work well in connection with Newton’s 
method. 

The condition (2.13) entering in the condition (2.14a) cannot be applied if no 
downstream data are available. Consider the mass flow per unit time 

m(x) = I Pk VI 4x, u) QfY acrOSS 
the channel 

It is easily shown that m(x) is independent of x for the true non-linear equations 
even if the channel walls are not planes. Thus an exact boundary condition is given 
by 

HZ(&)= lim m(x). x+--co 
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Kowever, some care must be observed when this condition is used in cormectio 
with a time-marching procedure in the interior. Consider the ~orres~o~d~~g 
linearized homogeneous boundary condition 

and the Fourier transformed homogeneous upstream conditions (2.3) for cr3 = 

Usual Laplace transform analysis shows that this combination of upstream and 
downstream conditions leads to increasing solutions of the time-dependent 
equations. 

Therefore we will modify the boundary conditions and subtract the co~dit~o~$ 
(2.3) by their Fourier transformed versions for &o = 0. Now two scalar constants are 
missing at the upstream boundary. Delete the third of the frozen equations (2.2), 
and integrate the remaining system across the channel. That yields 

$ PO(X) = 2 zi&) = g j&)(x) = 0, 

where &(x) = 1: p(x, y) dy, etc. 
Thus the mean values across the channel of p, u, p are independent of x in the far 

regions outside the artificial boundaries. Knowledge of the left free stream data 
leads to accurate values for three scalar constants at the upstream boundary. 
two values are needed, and a natual choice for rapid convergence to the 
is the two in-going characteristic variables containing p, U, p. For tim 
procedures that is the most efficient treatment of the mean-values th 
tested. Well-posedness will be shown in Section 3. The out-going cha~acteri$ti~ 
variables have been extrapolated from the interior to the boundary in calculations 
with time-dependent procedures. 

In connection with Newton’s method the conditions for o = 0 have shown less 
influence on the convergence rate to the steady state. For example the in 
mentioned above for time-dependent methods has not turned up with N 
method. Extrapolations from the interior of physical variables and characteristic 
variables have been used in calculations with Newton’s method. The folio . COM- 
plete set of boundary conditions work well in connection with time 
procedures and also in connection with Newton’s method: 

1. the conditions (2.14) for w greater than zero, 

ndent 



100 LARS FERM 

2. the conditions (2.3) for o greater than zero, 

P(P,, Y) - BdPl) + WiIU(Bl, Y) - ficdP1)1= 0 (2.17a) 

P(B,P Y)-iw+~*cP(P1~ v)-iwI)l =o; (2.17b) 

3. the upstream conditions when w is zero 

(2.18a) 

(2.18b) 

4. the downstream condition when o is zero: use one of the conditions 

Ps3(P2) - $o(P2) = P%c -Pm 

m32) = Pm 

(2.19a) 

(2.19b) 

un(&)= lim m(x). (2.19~) 
x- --co 

Remark 1. When the limit at infinity depends on y, the right-hand sides of 
(2.17) are not zero and the mean values at infinity are used in (2.18), (2.19). 

Remark 2. In connection with Newton’s method the conditions (2.17)-(2.18) 
can be replaced by the unmodified conditions (2.3) for simplicity. 

Remark 3. A simple procedure applicable in connection with Newton’s method 
when only upstream data are available, is to specify all three required mean values 
fiO, li,, j$, at the upstream boundary. A value from the interior is used for PO at the 
downstream boundary. Only a few calculations have been carried out with this 
procedure, but they all worked well. In these calculations p(x, y) - J+,(X) was 
extrapolated from the interior to the upstream boundary. 

Remark 4. In connection with a time-dependent procedure condition (2.19a) 
leads to the most rapid convergence to the steady state. Conditions (2.19b) and 
(2.19~) can be used if U, or pco are not available. Note that condition (2.19~) 
makes use of upstream data at the downstream boundary. 

Remark 5. Assume that a linear combination ofp and u at the upstream boun- 
dary is obtained directly from the calculations in the interior (for example, via 
extrapolations). Then p and u can be calculated locally using the boundary con- 
ditions (2.17a), (2.18b). When p is Fourier transformed along the boundary, v is 
obtained from condition (2.16b). The downstream boundary is treated similarly. 

Remark 6. In connection with an explicit method condition (2.19~) usually 
leads to a second-degree equation for one of the mean values. If u or p is deter- 
mined from the other conditions the equation is linear. In connection with New- 
ton’s method condition (2.19~) can be treated implicitly (see [6]). 
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Remark 7. In the isentropic case the equations 

Px=C2P.\-, 

Py = F2P, 

lead to the conditions 

p, = C’b,) w > 0. 

Note that the second differential equation leading to conditions (2.3), and hence 
condition (2.17b), becomes meaningless. 

The Semi-discretized Channel Problem 

This is given by 

Aw, + BD,w = 0, (2.28) 

where 

D +ywb-2 Y,) for Z-0 

D,wbG Yr) = &.v 4-T YJ for l= 1, . ..) M- 3 

D -ywk Y,) for I=M 

v(x, 0) = 21(x, 1) = 0. 

The fundamental boundary conditions for this problem can be shown to be i 
tical to those of the differential equations. The proof is analogous. Note tha 
semi-discretized equations corresponding to (2.4) can be Fourier transformed using 
the finite expansions corresponding to (2.5). 

Flow in a Periodic Channel 
Assume that the solution is periodic on the q-direction, and that the ([, q)-coor- 

dinate system is obtained by a rotation of the (x, y)-system. Assume also that the 
x-axis is parallel to the free stream direction, and that u and u are the velocity com- 
ponents in the x- and y-directions. The artificial boundaries are given by { = fll and 
$ = p2. When the steady state Euler equations are frozen around the free stream 
values, we get 

Aw, + Bw, = 0, 

where the diagonal of B is zero since C= u m = 0. This leads to the extrapolations 
(2.3) across the far region and to the system (2.4) for p and v. To solve (2. 
rotate the coordinate system into the ({, q)-system without changing the dep~~de~~ 
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variables. Assuming that the period length is 277, the resulting equations can be 
solved using the Fourier expansions 

Some calculation leads to the downstream boundary conditions 
--- 

PAi, 0) = y G,(L 0) 
(2.22) --- 

PAL 0) = - y 6,(5, w). 

At the upstream boundary the signs on one side of the equal signs are reversed. 
Note that u as in the channel problem is the velocity component in the direction 
perpendicular to the free stream direction. The fundamental boundary conditions 
for the incompressible periodic channel problem have been studied in [4]. 

3. ENERGY ESTIMATES FOR TIME-DEPENDENT METHODS 

The channel problem studied here is solved very efficiently using Newton’s 
method but steady state problems are often solved using time-dependent 
procedures. In this section it is shown that conditions (2.16)-(2.19) lead to 
well-posed problems for the constant coefficient unsteady differential equations. 

Consider the time-dependent system corresponding to (2.2) in the interior region. 
The Fourier expansions (2.5), and the corresponding cosine-expansions of u and p 
lead to the Fourier transformed system 

(3.1) 

where 

n = diag(ii, u + C, U, u - c); 

s= i 1p 0 p 
0 c 0 --c 
0 0 TJ2 0 ’ (3.2) 

0 E2p 0 c2p 

J 
0 0 

ij= i 0 0 

0 0 

0 -1 1 0 1 ’ o-1 
0 0 1 0 
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P,, kJ, v^,, fi,, are the Fourier coefficients of p, u, v, p; respectively, pW, ii,, v”,, pW 
are the Fourier transformed characteristic variables in the x-direction. Intro 

where a is a parameter greater than zero. Using the differential equations (3.1) we 
get 

(3.3) 
where 

E(x) = -Up”,(x)’ - (C + ii) ii,(x)’ - iiv”,(x)” + oI(C - ii) j-&(x)‘. 

Consider 0~) f 0, and set the parameter a equal to one. The last term of (3.3) is zero 
since 8 is skew-symmetric. The upstream boundary conditions correspon 
(2.16b) and (2.17) are 

- - 
fi,(P,)= -UP, 

u”,(Bl) =- u > CfuBI) -t- r?oAOi)3. 

hen these conditions are introduced into (3.3), we get 

The downstream condition corresponding to (2.16a) is 

which leads to 

Jw2) = -al(P2)” 

+ii 
i 

-2ir,,u32Y-~ Cw(82j2 + 2 v 2 5-5j q/M E(lj2)] i- 
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It remains to obtain estimates when u is zero. The last term of (3.3) is zero even 
when the parameter a is not equal to one. Since u is expanded in a sine series, there 
exists no Fourier coefficient GO. Thus the variable fiO defined by (3.2) is deleted in 
(3.3). The homogeneous upstream boundary conditions corresponding to (2.18) are 

which yields 

Thus the upstream boundary terms of (3.3) are always less than or equal to zero. 
The downstream conditions corresponding to (2.19) are 

(3.4) 

The last condition is equivalent to condition (2.15). 
When PO(&) is eliminated by one of the conditions (3.4), E&) becomes a 

quadratic form in &(/I,) and PO(&). It is obvious that if the parameter CI is chosen 
small enough, this quadratic form is less than or equal to zero independently of 
&dP2) and iMB2). 

The estimates derived above lead to 

$ Il~J12aA 0 = 0, 1, 2 )... . 

Thus the linearized time-dependent problem with the boundary conditions 
(2.16)-(2.19) is well posed. 

4. ERROR ANALYSIS 

Consider the following simple model problem with constant coefficients: 

AoW~?+Bowj,T)=O, o<x<co, O<ydl 

4Tw> VI = g(Y) 
lim pcT’(x, y) = pm 

x-cc 

dT’(X, 0) = dT’(X, 1) = 0. 

(4.1) 
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I-Iere 

Functions g,(v) are specified and w. is constant with ziO = 0. 
This problem can be solved using the technique in Section 2, and the fun- 

damental boundary conditions lead to the correct solution if the region is truncated 
at an artificial boundary x=/I > 0. However, if we use iif uo, p #po7 etc., in the 
boundary condition, i.e., change the coefficient matrices in the area x,/I, the fun- 
damental conditions will usually not lead to exactly the correct solution. The error 
obtained can be expected to give an idea of the error when the fundamental con- 
ditions are used for the non-linear problem. In that case the change of the matrices 
is due to the freezing of the coefficient matrices in the far region. Denote the 
solution of the model problem (4.1) by wCTJ, and the solution of the truncated 
problem with the fundamental boundary conditions (2.16a), (2.19b) by w(‘). 
Straightforward calculation leads to the estimate 

IIW(TYX, .)-w%, .)I1 -6 Ib’=‘(p, *>ll, 

where 

d= COPOUOJ --1. --- 
CPUf.0 

The factor 6 depends on the change of the matrices. For the non-linear pro 
that change varies in the far region, and we estimate 6 by 

where 

The linear analysis leads to 

a,- IINL .)ll, 
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and we get the final estimate 

1) W(T)(X, . ) - WCF) (4 .)I1 - II~(T)(B, 412+8y ll~‘T’(B, .)I, (4.3) 

Note that 6, is zero in the natural case when the limit at infinity is independent of 
y. Note also that 

lim IIuCT’(fi, .)I[ = 0. 
x+cc 

For comparison we also solve the truncated problem when the pressure is set to 
the free stream value at the boundary. The solution is denoted by w(r). Some 
calculation leads to the estimate 

IIW’T’(X 7 .) - wyx, .)/I - I(dT)(p .)I] > . (4.4) 

A comparison bet.ween the estimates (4.3) and (4.4) demonstrates the higher order 
of accuracy of the fundamental boundary conditions in the natural case when 6, is 
zero. 

The upstream open boundary problem corresponding to the downstream open 
boundary problem (4.1) is 

A,w,+B,w,=O, -KJ<xdO, O<y<l 

lim ~~(4 Y) = g(u) 
x+-cc 

P(O, Y) = f(Y) 

u(x, 0) = u(x, 1) = 0, 

(4.5) 

where 

and f(y) are given functions. 
When the artificial boundary x= -/3 is introduced, analogous calculations lead 

to the same error estimates as for the downstream open boundary problem. 

5. NUMERICAL EXPERIMENTS 

The constant coefficient error estimates given in the preceding section are verified 
for the true non-linear equations by experiments presented in this section. The 
derivatives are approximated by central differences and the .resulting systems of 
algebraic equations are solved directly using Newton’s method. 
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Since the fundamental boundary conditions are very accurate a fine mesh is 
needed to make the errors due to the boundary conditions dominate but it turns 
out that it is only necessary to refine the mesh in the x-direction. Even when the 
mesh is coarse in the y-direction, the solution is changed very little when the 
artificial boundary is moved along the channel. The errors due to the difference 
approximations in the area between the different artificial boundaries seem to 
appear. The explanation is that the fundamental boundary conditions for the s 
discretized problem (2.20) are exactly the same as those of the differential 
equations. It is easily shown that the error estimates also are the same. If the 
estimates are verified for the semi-discretized problem, it is just a matter of 
refinement to transfer the results to the differential eq,uations. That saves mu 
computer capacity since the computational work grows rapidly with the number of 
grid points across the channel. 

EXPERIMENT 1. The half channel problems studied in Section 4 are consi 
for the isentropic flow when p is eliminated from the system by 

p = ap?, a = 1.43, ‘u’ = 1.4. 

The reduced system requires a few modifications of the model problems (4.1) and 
(4.5): 

1. The matrices A,, B, are replaced by the corresponding reduced ~~~li~ear 
matrices. 

2. p is deleted from the vector wi. 
3. Data for p are replaced by data for p. 

Note that these model problems determine the treatment of m = 0 in the boun 
conditions. 

Second-order extrapolations from the interior are used for u an 
downstream boundary and for p at the upstream boundary. It turns out that the 
solutions at x = 11 are very close to the limits at infinity. Thus the solutions 
obtained with the artificial boundaries x = 51 are very accurate. These accurate 
solutions are compared to those obtained using fi = +0.5, = 20.25, p = io.1, an 
p = tO.05. To make sure that the errors at the boundary ominate, a 100 x 15 gri 
is used over the large region. The grids over the smaller regions coincide wit 
over the large region. The errors obtained in the experiments are compared 
linear error terms leading to the error estimate (4.2). When values fro 
non-linear matrices replace w0 in the definition of S, this factor becomes variable. 
Consider the mean value 

The mean value is weighted since we expect that the freezing of the matrices has a 
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observed 
error T 

0.2. x 

x 

x 
x x 

x 
0.1 - 

x x 
s 

.X - 

. . x 
X. 

X -  .  

0.1 0.2 
+ error 

estimate 

FIG. 2. Test of the linear error estimates: x= the upstream open boundary problem; .= the 
downstream open boundary problem. 

smaller effect far out where the solution is close to the limit at infinity. The results 
of the experiments are shown in Fig. 2. Every point in the figure represents one 
experiment. The error estimate is labeled on the x-axis, and the error observed is 
labeled on the y-axis. Obviously the linear analysis gives a very good picture of the 
error for the non-linear problem. We also check the more practical error estimate 
(4.3). Consider the natural case when the limit at infinity is independent of y. 
Such solutions of the upstream open boundary problem (4.5) can be obtained by 
choosing constant functions gi(u). Since the constant 6, in the error estimate is 
zero, it is enough to check that 6 defined by (5.1) is proportional to /lo(B, .)II. The 
results shown in Fig. 3 confirms that. 

6 

0.2 
T 

x 

x 

OJ- 

x 

x 

L 
0.1 0.2 a3 ’ llV(B)!! 0.4 

FIG. 3. The factor 8 defined by (5.1) as a function of Ilv(fi)ij =max,, Iv@, y)J when the solution at 
infinity is independent of y. 
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EXPERIMENT 2. Consider the same half-channel problems when all four 
variables p, u, v, p are involved. The speed of sound is defined by 

As above, an accurate solution is obtained over an interval of length one, but t 
grid is only 25 x 10. The solution of the upstream open boundary problem is shown 
in Fig. 4. The long curves represent the accurate solution obtained over the long 
interval. The short curves represent the solution obtained over the small region 
-0.2 < x < 0. The curves labeled F are obtained using the fundamental bo 
conditions, and those labeled I are obtained using the values at infinity di 
the boundary, i.e., 

p(-0.2, y)=pum=2.0 

u( -0.2, y) = - co = 0.6 

v( - 0.2, y ) = v _ m = 0.0. 

a 

FIG. 4. The upstream open boundary problem. 
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The data at the fixed downstream boundary is 

p(0, y)= 4.0 + 0.5 cos 7cy. 

The difference in accuracy between the F- and I-solutions is striking. This high 
accuracy of the fundamental boundary conditions is obtained in the natural case 
when the limit at infinity is independent of y such that the constant 6, in the error 
estimate (4.3) is zero. That the accuracy of the fundamental boundary conditions is 
worse when the limit at infinity is not constant can be demonstrated by the 
downstream open boundary problem (4.1) with the data 

Pa v)= 1.7 

~(0, y)= 0.6 

~(0, y) = 0.5 sin 7cy 

pm = 3.7. 

Figure 5a, where the velocity component ZJ is plotted over the region 0 XX < 1, 
0 < y < 1, shows that the limit to the right of the solution is far from constant. 
Figure 5b shows a much larger error for the F-conditions than in the preceding 
experiment, but the F-solution is still more accurate than the I-solution obtained 
with the boundary condition ~(0.2, JI) = pm = 3.7. 

EXPERIMENT 3. Figure 6 shows a problem with two open boundaries. The 
elevation of the lower channel wall is defined by a sine curve in the interval 
1x1~ 0.2. The line y = 0.5 can also be regarded as a line of symmetry. In that case 

bP 
4.5 

': 

\ 

Y=l.O 

4.0. F 

I 

FIG. 5. (a) A solution with y-dependent,limit at infinity. (b) The accuracy when the limit at infinity 
depends on y. 
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J/,i,l/,,,1/1,11,11/,1,1/1///l////i/il 
I I 

Y=l.O 
I 

-I / 
I 
I 

;+ 

4' 
1 I 

/ I I 
j ---+ 

I I / 

-1 I I--+ 
/ I 

/,17/r,// //11111 I, rr y-o.5 
45 25 0 27 A7 

FIG. 6. The model problem. 

there is a solid body in the flow. The condition that the velocity component in the 
normal direction is zero at the channel walls can be written 

if the channel wall is given by y = q(x). 
This condition leads to a discontinuity of the derivatives of the solution at 

x= +O.2 since rzx is discontinuous there. The transformation 

makes the computational region rectangular. The differential equations are trans- 
formed into 

Aw, + &q [r’b)(.F- 1)A +&I ws= 

The data at infinity are 
U-CC = 0.6 

pm = 2.0. 

The flow is isentropic and p is eliminated from the system as above. An accurate 
solution w(T) is obtained over the large region defined by -0.45 6x ~0.41. 
solution wCF) is obtained over the small region -0.25 <x GO.27 using the 
damental boundary conditions. The difference p (F) - pCT’ along the channel wal 
with the elevation is labeled F in Fig. 7. The difference is obviously almost equal to 
zero. When the values at infinity are used directly as they are for the ~h~si~~~ 
variables at the boundaries, i.e., 

u(-0.25, y)=u-,=0.6 

4-0.25, y)=u_,=Q.O 

~(0.27, y) = pm = 2.0, 
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FIG. 7. For the problem with a solid body in the flow, the accuracy of the F-conditions is striking. 
The errors are plotted along the curve composed of the line of symmetry and the surface of the body. 

the solution does not converge even if w CT) is used as the initial solution. The 
solution does converge when the values at infinity are used for the linearized 
in-going characteristic variables in the x-direction, i.e., 

~(-0.25, y)=u_,=O.O 

Cp(-0.25, v)+pu(-0.25, y)=Cp-,+pu_, 

Cp(O.27, y) - pu(O.27, y) = Cp, - j%.~, . 

The difference p(I) - pCT), where p (I) is obtained in the last experiment is labeled I in 
Fig. 7. The error is obviously very large. It is even much larger than the error in the 
boundary data. 

One could ask whether the large regions are large enough to give an accurate 
solution for comparison in the experiments presented above. One reason for that is 
the fact that the free stream values of at least two components of the solution are 
known in all the experiments. Besides, the experiments actually show that the 
boundary conditions have approximated the solution well in the area between the 
boundaries of the large and small regions. 

8. CONCLUSION 

The boundary conditions presented here lead to very accurate solutions even 
when the computational domain is made relative1 small. They require Fourier 
transformations back and forth along the artificial boundary at every solution step. 
Assuming that the points are ordered in x, that is hardly a drawback in connection 
with Newton’s method since the number of solution steps, and hence the number of 
Fourier transformations, is low. Most of the computational work at the boundary 
is devoted to Gauss eliminations at the corners of the Jacobian [S]. This work 
corresponds to that over just one extra grid line across the channel. The number of 
solution steps needed is not increased by the fundamental boundary conditions. The 
channel problem has been solved efficiently with Newton’s method, and hence a 
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very efficient procedure is obtained when the fundamental boundary conditions are 
used to decrease the computational region in connection with 

Time-dependent procedures require a much larger number of solution steps, 
hence also a much larger number of Fourier transformation 
FFT the work at the boundary corresponds to that over a fix 
channel. The FFT makes the boundary conditions more efficient when the mesh is 
refined. Much work at the boundary can be saved by using fewer Fourier 
Cents. The fundamental boundary conditions for the external problem are us 
connection with a time-dependent procedure in ES]. 
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